Pause
Read
CEA vacancy search engine

Control of trapped electron mode turbulence with an electron cyclotron resonant source


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-25-0546  

Direction

DRF

Thesis topic details

Category

Theoretical physics

Thesis topics

Control of trapped electron mode turbulence with an electron cyclotron resonant source

Contract

Thèse

Job description

The performance of a tokamak plasma largely depends on to the level of turbulent transport. Trapped electron modes are one of the main instabilities responsible for turbulence in tokamaks. On the other hand, electron cyclotron resonance heating is a generic heating system for tokamaks. Both physical processes rely on resonant interactions with electrons. Non-linear interaction between the resonant processes is theoretically possible. This thesis aims to evaluate the possibility of exploiting this non-linear interaction to stabilize the trapped electron modes instability within tokamak plasmas, using a heating source present on many tokamaks, including ITER. This control technique could improve the performance of certain tokamaks without any extra cost.
The thesis will be based on a theoretical understanding of the two processes studied, will require the use of the gyrokinetic code GYSELA to model the non-linear interactions between resonant processes, and will include an experimental aspect to validate the identified turbulence control mechanism.

University / doctoral school

Physique et Sciences de la Matière (ED352)
Aix-Marseille Université

Thesis topic location

Site

Cadarache

Requester

Position start date

01/11/2025

Person to be contacted by the applicant

Donnel Peter peter.donnel@cea.fr
CEA
DRF/IRFM
DRF/IRFM/SPPF/GTSN
bât. 513/148
CEA-Cadarache
13108 Saint Paul-Lez-Durance Cedex
+33 (0)442252234

Tutor / Responsible thesis director

DUMONT Rémi remi.dumont@cea.fr
CEA
DRF/IRFM
CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
+33 (0)442254876

En savoir plus