Pause
Read
CEA vacancy search engine

Development and Characterization of Terahertz Source Matrices Co-integrated in Silicon and III-V Photoni


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-26-0107  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

Development and Characterization of Terahertz Source Matrices Co-integrated in Silicon and III-V Photonics Technology

Contract

Thèse

Job description

The terahertz (THz) range (0.1–10 THz) is increasingly exploited for imaging and spectroscopy (e.g. security scanning, medical diagnostics, non-destructive testing) because many materials are transparent to THz radiation and have unique spectral signatures. However, existing sources struggle to offer both high power and wide tunability: electronic sources (diodes, QCLs) deliver milliwatts but over narrow bands, while photonic emitters (photomixers in III–V semiconductors) are tunable across broad bands but emit only microwatts. This thesis aims to overcome these limitations by developing an integrated matrix of THz sources. The approach is based on photomixing two 1.55 µm lasers in III–V photodiodes to generate a phase-coherent THz current coupled to THz antennas.
Initially, the PhD student will experimentally investigate an existing 16-element THz antenna array (STYX project) CEA-CTReg/DNAQ: setting up the test bench, measuring phase coherence, optical coupling, radiation lobes, and constructive interference. These experiments will provide a scientific foundation for the subsequent design of an integrated photonic array on silicon. The student will simulate the photonic architecture (couplers, waveguides, phase modulators, Si/III–V transitions) synchronizing multiple InGaAs photodiodes. Prototyping will include the fabrication of silicon photonic circuits (CEA-LETI) and THz photodiodes/antennas in InP (III-V Lab or, to be confirmed, Heinrich-Hertz-Institut of the Fraunhofer—HHI), followed by their hybrid integration (bonding, alignment).
This thesis will also rely on close collaboration with the IMS laboratory (Bordeaux), which is nationally and internationally recognized for its expertise in silicon photonics and THz systems. IMS will provide complementary expertise in optical modeling, electromagnetic simulation, and experimental characterization, reinforcing the multidisciplinary strength of the project.
Finally, the ultimate goal of this thesis is to develop a proof-of-concept demonstrator with a few phase-locked THz emitters (e.g. 4–16) will be produced and characterized, showing enhanced beam directivity and output power thanks to constructive interference. This demonstration will pave the way for large-scale THz source arrays with significantly improved range and penetration for advanced THz imaging systems.

University / doctoral school

Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/09/2026

Person to be contacted by the applicant

HAMDI Maher Maher.Hamdi@cea.fr
CEA
DRT
CEA
Cœur Bersol,
28 Av. Gustave Eiffel Bât B,
33600 Pessac
France
05 24 44 10 02

Tutor / Responsible thesis director

DUSSOPT Laurent laurent.dussopt@cea.fr
CEA
DRT/DOPT//LI2T
CEA
17 rue des martyrs
38054 Grenoble
04 38 78 58 98

En savoir plus