Pause
Read
CEA vacancy search engine

Electrocatalyzed Reductive Couplings of Olefins and Carbonyls for the synthesis of sustainable molecules


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-25-0489  

Direction

DRF

Thesis topic details

Category

Condensed Matter Physics, chemistry, nanosciences

Thesis topics

Electrocatalyzed Reductive Couplings of Olefins and Carbonyls for the synthesis of sustainable molecules.

Contract

Thèse

Job description

The LCMCE aims to develop a sustainable method for the reductive functionalization of carbonyl derivatives with olefins via electrochemistry. Traditional redox processes in organic synthesis often rely on thermochemical methods using stoichiometric oxidants or reductants and produce waste products. The electrification of these processes will improve their atom- and energy economy. The novelty of this project lies in the generation of 'metal-hydride' catalytic species by cathodic reduction of organometallic complexes in the presence of protons rather than by adding chemical reductants, as described in the literature. Inserting an alkene function into the metal-hydride bond will lead to the formation of reactive intermediates for coupling with electrophilic carbonyls. The substrates for this project have been selected to provide rapid proof of concept and allow the study of more ambitious reactivities, including carboxylation reactions in which CO2 is the electrophile. Particular attention will be paid to the design of homogeneous catalysts and their synergy with electrochemical conditions to lead to active and selective species. The project will also focus on deciphering the mechanisms involved in these reactions.

University / doctoral school

Sciences Chimiques: Molécules, Matériaux, Instrumentation et Biosystèmes (2MIB)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

MIFLEUR Alexis alexis.mifleur@cea.fr
CEA
DRF/IRAMIS/NIMBE/LCMCE
IRAMIS/NIMBE/LCMCE
Bât 125, CEA Saclay
91191 Gif-sur-Yvette Cedex
01 69 08 57 43

Tutor / Responsible thesis director

CANTAT Thibault thibault.cantat@cea.fr
CEA
DRF/IRAMIS/NIMBE/LCMCE
IRAMIS/NIMBE/LCMCE
Bât 125, CEA Saclay
91191 Gif-sur-Yvette Cedex
01 69 08 43 38

En savoir plus

https://iramis.cea.fr/en/nimbe/lcmce/pisp/alexis-mifleur/
https://iramis.cea.fr/en/nimbe/lcmce/
https://iramis.cea.fr/pisp/thibault-cantat-fr/