Pause
Read
CEA vacancy search engine

Electronic structure calculation with deep learning models


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-24-0487  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

Electronic structure calculation with deep learning models

Contract

Thèse

Job description

Ab initio simulations with Density Functional Theory (DFT) are now routinely employed across scientific disciplines to unravel the intricate electronic characteristics and properties of materials at the atomic level. Over the past decade, deep learning has revolutionized multiple areas such as computer vision, natural language processing, healthcare diagnostics, and autonomous systems. The combination of these two fields presents a promising avenue to enhance the accuracy and efficiency of complex materials properties predictions, bridging the gap between quantum-level understanding and data-driven insights for accelerated scientific discovery and innovation. Many efforts have been devoted to build deep learning interatomic potentials that learn the potential energy surface (PES) from DFT simulations and can be employed in large-scale molecular dynamics (MD) simulations. Generalizing such deep learning approaches to predict the electronic structure instead of just the energy, forces and stress tensor of a system is an appealing idea as it would open up new frontiers in materials research, enabling the simulation of electron-related physical properties in large systems that are important for microelectronic applications. The goal of this PhD is to develop new methodologies relying on equivariant neural networks to predict the DFT Hamiltonian (i.e. the most fundamental property) of complex materials (including disorder, defects, interfaces, etc.) or heterostructures.

University / doctoral school

Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/10/2024

Person to be contacted by the applicant

SKLENARD Benoît benoit.sklenard@cea.fr
CEA
DRT/DCOS//LSM
MINATEC Campus
F-38054 Grenoble
France
0438786532

Tutor / Responsible thesis director

TRIOZON François francois.triozon@cea.fr
CEA
DRT/DCOS//LSM
17 avenue des Martyrs, 38054 Grenoble
04 38 78 21 86

En savoir plus