General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DRF-25-0308
Direction
DRF
Thesis topic details
Category
Condensed Matter Physics, chemistry, nanosciences
Thesis topics
Influence of ionization density in water on fluorescent solutes. Application to the detection of alpha radiation
Contract
Thèse
Job description
The location and rapid identification, at a distance, of sources of alpha and beta particle emissions on surfaces or in wet cavities or solutions, in nuclear facilities undergoing decommissioning or to be cleaned up, is a real challenge.
The aim of the proposed PhD project is to develop a concept for the remote detection of fluorescence light from water radiolysis processes on molecules or nano-agents. Temporal characterization using fluorescence lifetime measurements will enable detection to be attributed to a type of radiation, depending on its linear energy transfer (LET). In the Bragg peak of alpha radiation, where the TEL is maximal, the ionization density due to this TEL influences the fluorescence lifetime. However, dose rate effects also need to be considered.
Molecules and nanoparticles that are candidates for forming fluorescent products and are sensitive to the ionization density and radicals produced in traces at very short times will be identified by guided bibliography work, then tested and compared by measurements. Spectral measurements (absorption and fluorescence) and fluorescence lifetimes of the corresponding fluorescent species will be carried out using the multi-channel (16-channel) TCSPC (Time Corelated Single Photon Counting) method. Ion beams or alpha particles from sealed sources will be used for proof-of-concept. Ion beams or alpha particles from sealed sources will be used for proof-of-concept in the CEA clean-up/dismantling program.
University / doctoral school
Sciences Chimiques: Molécules, Matériaux, Instrumentation et Biosystèmes (2MIB)
Paris-Saclay
Thesis topic location
Site
Saclay
Requester
Position start date
01/10/2025
Person to be contacted by the applicant
BALDACCHINO Gérard
gerard.baldacchino@cea.fr
CEA
DRF/IRAMIS/LIDyL/DICO
CEA Paris-Saclay
DRF/IRAMIS/LIDyL
Dynamique et Interactions en phase COndensée (DICO)
Bât.701, p19B
F-91191 Gif-sur-Yvette cedex,
France
01 69 08 57 02
Tutor / Responsible thesis director
BALDACCHINO Gérard
gerard.baldacchino@cea.fr
CEA
DRF/IRAMIS/LIDyL/DICO
CEA Paris-Saclay
DRF/IRAMIS/LIDyL
Dynamique et Interactions en phase COndensée (DICO)
Bât.701, p19B
F-91191 Gif-sur-Yvette cedex,
France
01 69 08 57 02
En savoir plus
https://iramis.cea.fr/lidyl/dico/pisp/gerard-baldacchino-2/
https://iramis.cea.fr/lidyl/dico/