General information
            
            
                
                
                
                    
                        Organisation
                    
                    The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
  
                
                
                    
                        Reference
                    
                    SL-DRF-26-0228  
                
        
                
                
                
                
             
	Direction
DRF
Thesis topic details
	Category
Corpuscular physics and outer space
	Thesis topics
INVESTIGATION OF THE NUCLEAR TWO-PHOTON DECAY
	Contract
Thèse
	Job description
	The nuclear two-photon, or double-gamma decay is a rare decay mode in atomic nuclei whereby a nucleus in an excited state emits two gamma rays simultaneously. This second-order electromagnetic process, well known in atomic physics, has been little studied for the atomic nucleus due to the largely predominant first-order processes. Even-even nuclei with a first excited 0+ state are favorable cases to search for a double-gamma decay branch, since the emission of a single gamma ray is strictly forbidden for 0+ to 0+ transitions by angular momentum conservation. The double-gamma decay still remains a very small decay branch (<1E-4) competing with the dominant (first-order) decay modes of atomic internal-conversion electrons (ICE) or internal positron-electron (e+-e-) pair creation (IPC). 
The thesis project has two distinct experimental parts: First, we store bare (fully-stripped) ions in their excited 0+ state in the heavy-ion storage ring (ESR) at the GSI facility to search for the double-gamma decay in several nuclides. For neutral atoms the excited 0+ state is a rather short-lived isomeric state with a lifetime of the order of a few tens to hundreds of nanoseconds. At relativistic energies available at GSI, however, all ions are fully stripped of their atomic electrons and decay by ICE emission is hence not possible. If the state of interest is located below the pair creation threshold the IPC process is not possible either. Consequently, bare nuclei are trapped in a long-lived isomeric state, which can only decay by double-gamma emission to the ground state. The decay of the isomers is identified by so-called time-resolved Schottky Mass Spectroscopy. This method allows to distinguish the isomer and the ground state by their (very slightly) different revolution time in the ESR, and to observe the disappearance of the isomer peak in the mass spectrum with a characteristic decay time. Successful experiment establishing the double-gamma decay in several nuclides (72Ge, 98Mo, 98Zr) were already performed and a new experiment to study the nuclide 194Pb has been accepted by the GSI Programme Committee and its realization is planned for 2027.
The second part concerns the direct observation of the emitted photons using gamma-ray spectroscopy. While the storage ring experiments allow to measure the partial lifetime for the double gamma decay, further information on the nuclear properties can be only be achieved by measuring the photon themselves. A test experiment has been performed to study its feasibility and the plans a more detailed study should be developed with the PhD project.
 
	University / doctoral school
PHENIICS (PHENIICS)
Paris-Saclay
Thesis topic location
	Site
Saclay
Requester
	Position start date
01/10/2026
	Person to be contacted by the applicant
KORTEN Wolfram 
 w.korten@cea.fr
CEA
DRF/IRFU/DPhN/LENA
Drf/IRFU/DPhN
Bat 703 - Orme des Merisiers
91191 Gif/Yvette cedex
 +33169084272
	Tutor / Responsible thesis director
KORTEN Wolfram 
 w.korten@cea.fr
CEA
DRF/IRFU/DPhN/LENA
Drf/IRFU/DPhN
Bat 703 - Orme des Merisiers
91191 Gif/Yvette cedex
 +33169084272
	En savoir plus
https://www.researchgate.net/profile/Wolfram_Korten
http://irfu.cea.fr/dphn/Phocea/Vie_des_labos/Ast/ast_sstheme.php?id_ast=293
https://www.gsi.de/en/work/research/appamml/atomic_physics/experimental_facilities/esr.htm