General information
            
            
                
                
                
                    
                        Organisation
                    
                    The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
  
                
                
                    
                        Reference
                    
                    SL-DRF-26-0321  
                
        
                
                
                
                
             
	Direction
DRF
Thesis topic details
	Category
Corpuscular physics and outer space
	Thesis topics
Magnetar formation: from amplification to relaxation of the most extreme magnetic fields 
	Contract
Thèse
	Job description
	Magnetars are neutron stars with the strongest magnetic fields known in the Universe, observed as high-energy galactic sources. The formation of these objects is one of the most studied scenarios to explain some of the most violent explosions: superluminous supernovae, hypernovae, and gamma-ray bursts. In recent years, our team has succeeded in numerically reproducing magnetic fields of magnetar-like intensities by simulating dynamo amplification mechanisms that develop in the proto-neutron star during the first seconds after the collapse of the progenitor core. However, most observational manifestations of magnetars require the magnetic field to survive over much longer timescales (from a few weeks for super-luminous supernovae to thousands of years for Galactic magnetars). This thesis will consist of developing 3D numerical simulations of magnetic field relaxation initialized from different dynamo states previously calculated by the team, extending them to later stages after the birth of the neutron star when the dynamo is no longer active. The student will thus determine how the turbulent magnetic field generated in the first few seconds will evolve to eventually reach a stable equilibrium state, whose topology will be characterized and compared with observations.
 
	University / doctoral school
Astronomie et Astrophysique d’Île de France (ED A&A)
Paris-Saclay
Thesis topic location
	Site
Saclay
Requester
	Position start date
01/10/2026
	Person to be contacted by the applicant
Raynaud Raphaël 
 raphael.raynaud@cea.fr
CEA
DRF/IRFU/DAP/LMPA
Orme des merisiers, Bat 709
CEA Saclay
91191 Gif-sur-Yvette
 
	Tutor / Responsible thesis director
Guilet Jérôme 
 jerome.guilet@cea.fr
CEA
DRF/IRFU/DAP/LMPA
Orme des merisiers, Bat 709
CEA Saclay
91191 Gif-sur-Yvette
 06 38 62 46 30
	En savoir plus