Pause
Read
CEA vacancy search engine

Micro-needles functionalized with aptamers for the optical detection of cortisol


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-25-0719  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

Micro-needles functionalized with aptamers for the optical detection of cortisol

Contract

Thèse

Job description

Compact, wearable medical devices, by offering autonomous and continuous monitoring of biomarkers, open the way to precise monitoring of pathologies outside of care centers and to a personalized therapeutic approach. The thesis project aims to develop wearable sensors based on microneedles (MNs) made of biomaterials for the minimally invasive detection of cortisol in the interstitial fluid (ISF) of the skin. Cortisol is one of the important biomarkers of physical and psychological stress, and is linked to the development of chronic diseases. ISF, a very rich source of biomarkers, offers an alternative to blood as a minimally invasive biofluid for cortisol quantification, and can be continuously analyzed by microneedle devices. Thus, swelling microneedles made of crosslinked biopolymer hydrogel have been developed at CEA-Leti over the last three years for ISF collection and analysis. The objective of the project will be to functionalize the hydrogel with a cortisol-sensitive aptamer molecular beacon, whose fluorescence will be activated in the specific presence of this metabolite, drawing on the expertise of the DPM NOVA team. Wearable optical sensors based on cortisol-sensitive MN patches will be designed, exploring two configurations: MN patches entirely made of hydrogel, and hybrid MN patches comprising an optical waveguide biopolymer and a cortisol-sensitive hydrogel coating. Different needle/waveguide shapes will be explored to optimize the fluorescence detection performance of the biosensors. The ability of the devices to puncture a skin model, sample artificial ISF, and detect the target will also be evaluated. The study will include biocompatibility tests, as well as a comparison with current methods for measuring serum cortisol by immunoassay.

University / doctoral school

Chimie et Sciences du Vivant (EDCSV)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

TEXIER-NOGUES Isabelle isabelle.texier-nogues@cea.fr
CEA
DRT/DTIS//LMCD
CEA/Grenoble
17 rue des martyrs
38054 Grenoble cedex 9
France
(+33) (0)4 38 78 46 70

Tutor / Responsible thesis director

CHOVELON Benoit
Université Grenoble Alpes
Département de Pharmacochimie Moléculaire (UMR 5063). Equipe NOVA.

En savoir plus