Pause
Read
CEA vacancy search engine

Microfluidics for biomimetic detection of airbone pathogens


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-25-0654  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

Microfluidics for biomimetic detection of airbone pathogens

Contract

Thèse

Job description

Air represents a complex contamination pathway that is difficult to control and through which numerous biological, biochemical, or chemical agents can affect populations and healthcare workers. Standard detection approaches, whether qPCR, antigen tests, or ELISA tests, rely on reagents specific to known and targeted agents. These approaches are therefore unsuitable for detecting an unknown pathogen that could result in a new pandemic. To face such unknown agents, new biosensors will be needed to distinguish between pathogenic and non-pathogenic agents. Also, these sensors will have to be miniature for deployment.

With a new microfluidic system the present project aims to explore original approaches for conducting such detection without preconceived notions. Based on the laboratory's experience and developments, the PhD will include :
- developing new materials and designs to optimize and to enable multiple bioaerosol sampling;
- developing a biomimetic biochip and optimize molecular interactions using microflows controlled at the micro/milliscale.

You will design a microfluidic card integrating new detection strategies and study them experimentally using prototypes already developed in the laboratory.

University / doctoral school

Ingénierie - Matériaux - Environnement - Energétique - Procédés - Production (IMEP2)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

ROUX Jean-Maxime jean-maxime.roux@cea.fr
CEA
DRT/DTIS//LSMB
CEA-Leti
DRT/DTIS/SEMIV/LSMB
17, rue des Martyrs
38054 GRENOBLE Cedex 9
FRANCE
04 38 78 01 03

Tutor / Responsible thesis director

DAVOUST Laurent laurent.davoust@hmg.inpg.fr
UGA
Grenoble INP - UMR 5266 - Science et ingénierie des matériaux et des procédés (SIMAP)
SIMAP
Science et Ingénierie des MAtériaux et Procédés
1130 rue de la Piscine - BP 75 - F-38402 ST MARTIN D HERES CEDEX

0476825206

En savoir plus

https://www.researchgate.net/profile/Jean-Maxime-Roux
https://www.leti-cea.fr/cea-tech/leti/Pages/recherche-appliquee/infrastructures-de-recherche/plateforme-micro-nanotechnologies-sante.aspx