Pause
Read
CEA vacancy search engine

Out-of-Distribution Detection with Vision Foundation Models and Post-hoc Methods


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-25-0718  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

Out-of-Distribution Detection with Vision Foundation Models and Post-hoc Methods

Contract

Thèse

Job description

The thesis focuses on improving the reliability of deep learning models, particularly in detecting out-of-distribution (OoD) samples, which are data points that differ from the training data and can lead to incorrect predictions. This is especially important in critical fields like healthcare and autonomous vehicles, where errors can have serious consequences. The research leverages vision foundation models (VFMs) like CLIP and DINO, which have revolutionized computer vision by enabling learning from limited data. The proposed work aims to develop methods that maintain the robustness of these models during fine-tuning, ensuring they can still effectively detect OoD samples. Additionally, the thesis will explore solutions for handling changing data distributions over time, a common challenge in real-world applications. The expected results include new techniques for OoD detection and adaptive methods for dynamic environments, ultimately enhancing the safety and reliability of AI systems in practical scenarios.

University / doctoral school

Sciences et Technologies de l’Information et de la Communication (STIC)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/08/2025

Person to be contacted by the applicant

ARNEZ YAGUALCA Fabio Alejandro fabio.arnez@cea.fr
CEA
DRT/DILS//LSEA
Centre d'integration Nano-INNOV
DRT/LIST/DILS/LSEA
91120 Palaiseau
France

Tutor / Responsible thesis director

MRAIDHA Chokri chokri.mraidha@cea.fr
CEA
DRT/DILS//LSEA
CEA Saclay
DRT/LIST/DILS/LSEA
91191 Gif-sur-Yvette
France
0169084889

En savoir plus