Pause
Read
CEA vacancy search engine

Oxidation kinetics of U1-yPuyO2 mixed oxides: experimental study and modelling


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DES-25-0127  

Thesis topic details

Category

Miscellaneous

Thesis topics

Oxidation kinetics of U1-yPuyO2 mixed oxides: experimental study and modelling

Contract

Thèse

Job description

The widespread use of MOX fuels (based on (U,Pu)O2 mixed oxides) in current nuclear reactors is an option being studied in France. Such a strategy could make it possible to stabilise plutonium stocks and conserve uranium resources. This scenario involves the multi-recycling of plutonium, which requires an upgrade of the existing plant to enable reprocessing of spent MOX fuel at industrial rates. The development of innovative processes and related basic research is then imperative.
Oxidation of MOX spent fuel by ad hoc thermal treatment could overcome one of the technological barriers identified, i.e. how to separate the fuel from its cladding prior to the dissolution step. The idea is to take advantage of the phase changes that occur as the fuel oxidises to collapse it into powder. However, data on the oxidation of (U,Pu)O2 oxides are currently scarce in the literature. The aim of this PhD thesis is to help fill this gap. The student in charge of this work will first have to characterise the nature of the phases formed during the oxidation of (U,Pu)O2 oxides, as well as the kinetics and mechanisms involved. These results will lead to the proposal of a phenomenological model linking the kinetics of (U,Pu)O2 oxidation with the Pu content, the O2 partial pressure, the temperature and the duration of the thermal treatment.
At the end of this PhD, the graduate student, with initial training in the physical chemistry of materials, will master a wide range of experimental techniques as well as advanced methods for modelling the reactivity of solids. These skills will open up many job opportunities in academic research or industrial R&D, both within and outside the nuclear sector.
Please note: A final internship is also offered in preparation for this PhD position. For further information, please contact the supervising team.

University / doctoral school

Sciences, Ingénierie, Santé (EDSIS)
Saint-Etienne

Thesis topic location

Site

Marcoule

Requester

Position start date

01/10/2024

Person to be contacted by the applicant

MARTINEZ JULIEN julien.martinez@cea.fr
CEA
DES/DMRC/SPTC/LSEM
Centre de Marcoule
bât 222
BP13143
30207 Bagnols sur Cèze cedex
04 66 39 73 14

Tutor / Responsible thesis director

FAVERGEON Loïc loic.favergeon@mines-stetienne.fr
MINES Saint-Étienne
UMR CNRS/LGF 5307 - SPIN/PTSI
Campus de Saint-Étienne
158, cours Fauriel
F-42023 Saint-Étienne cedex 2
+33 (0)4 77 42 02 93

En savoir plus