General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DRF-26-0087
Direction
DRF
Thesis topic details
Category
Corpuscular physics and outer space
Thesis topics
Precision measurements of neutrino oscillations and search for CP violation with the T2K and Hyper-Kamiokande experiments
Contract
Thèse
Job description
The study of neutrino oscillations has entered a precision era, driven by long-baseline experiments like T2K, which compare neutrino signals at near and far detectors to probe key parameters, including possible Charge-Parity Violation (CPV). Detecting CPV in neutrinos could help explain the Universe’s matter–antimatter asymmetry. T2K’s 2020 results gave first hints of CPV but remain limited by statistics. To improve sensitivity, T2K has undergone major upgrades: replacing the most upstream part of its near detector with a new target, increased accelerator power (up to 800 kW by 2025, aiming for 1.3 MW by 2030). The next-generation Hyper-Kamiokande (Hyper-K) experiment, starting in 2028, will reuse the T2K beam and near detector but with new far detector 8.4 times larger than Super-Kamiokande greatly boosting the statistics. The IRFU group has key role in the near detector upgrade and is now focusing on analysis, crucial for controlling systematic uncertainties crucial for the Hyper-K high statistics time. The proposed PhD work centers on analyzing the new near detector data: designing new sample selections taking into account for the low-momentum protons and neutrons from neutrinos, and refining neutrino–nucleus interaction models to improve energy reconstruction. The second goal is to propagate these improvements to Hyper-K, guiding future oscillation analyses. The student will also contribute to Hyper-K construction and calibration (electronics testing at CERN, installation in Japan).
University / doctoral school
PHENIICS (PHENIICS)
Paris-Saclay
Thesis topic location
Site
Saclay
Requester
Position start date
01/10/2026
Person to be contacted by the applicant
Henaff David
david.henaff@cern.ch
CEA
DRF/IRFU/DPHP/TK2
CEA Saclay
DRF/IRFU/DPhP/TK2
91191 Gif Sur Yvette cedex
Tutor / Responsible thesis director
Bolognesi Sara
sara.bolognesi@cea.fr
CEA
DRF/IRFU/SPP/TK2
IRFU/SPP (bat141, p149b)
Centre CEA de Saclay (Essonne)
Gif-sur-Yvette
91191 cedex
0169081461
En savoir plus