Pause
Read
CEA vacancy search engine

Reliable In Memory Computing Implementation of stochastic ultra-low-power bio- inspired neural networks


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-24-0625  

Direction

DRF

Thesis topic details

Category

Engineering science

Thesis topics

Reliable In Memory Computing Implementation of stochastic ultra-low-power bio- inspired neural networks

Contract

Thèse

Job description

The automated resolution of cognitive tasks primarily relies on learning algorithms applied to neural networks which, when executed on standard CMOS based digital architectures, lead to a power consumption several orders of magnitude larger than what the brain would require. Moreover, Conventional Edge neural network solutions can only provide output predictions, lacking the ability to accurately convey prediction uncertainty due to their deterministic parameters and neuron activations, resulting in overconfident predictions. Being able to model and compute the uncertainty of a given prediction allows the user to make better decisions (e.g. in classification or decision making processes) that can be therefore explained, which is crucial in a variety of applications, such as the safety-critical tasks (e.g., autonomous vehicles, medical diagnosis and treatment, industrial robotics, and financial systems). Probabilistic neural network is a possible solution to deal with uncertainty prediction. In addition, the power consumption can be drastically reduced by using hardware computing systems with architectures inspired by biological or physical models. They are mainly based on nanodevices mimicking the properties of neurons such as the emission of stochastic or synchronous spikes. Numerous theoretical proposals have shown that nanoscale spintronic devices (MTJ) are particularly well adapted. They can be used as stochastic components or as deterministic components.

University / doctoral school

Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/02/2024

Person to be contacted by the applicant

ANGHEL Lorena lorena.anghel@grenoble-inp.fr
Grenoble INPG
Laboratoire SPINTEC

06 82 31 26 47

Tutor / Responsible thesis director

ANGHEL Lorena lorena.anghel@grenoble-inp.fr
Grenoble INPG
Laboratoire SPINTEC

06 82 31 26 47

En savoir plus


https://www.spintec.fr/research/spintronic-ic-design/