Pause
Read
CEA vacancy search engine

SEARCH FOR DIFFUSE EMISSIONS AND SEARCHES IN VERY-HIGH-ENERGY GAMMA RAYS AND FUNDAMENTAL PHYSICS WITH H.


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRF-25-0604  

Direction

DRF

Thesis topic details

Category

Corpuscular physics and outer space

Thesis topics

SEARCH FOR DIFFUSE EMISSIONS AND SEARCHES IN VERY-HIGH-ENERGY GAMMA RAYS AND FUNDAMENTAL PHYSICS WITH H.E.S.S. AND CTAO

Contract

Thèse

Job description

Observations in very-high-energy (VHE, E>100 GeV) gamma rays are crucial for understanding the most violent non-thermal phenomena at work in the Universe. The central region of the Milky Way is a complex region active in VHE gamma rays. Among the VHE gamma sources are the supermassive black hole Sagittarius A* at the heart of the Galaxy, supernova remnants and even star formation regions. The Galactic Center (GC) houses a cosmic ray accelerator up to energies of PeV, diffuse emissions from GeV to TeV including the “Galactic Center Excess” (GCE) whose origin is still unknown, potential variable sources at TeV, as well as possible populations of sources not yet resolved (millisecond pulsars, intermediate mass black holes). The GC should be the brightest source of annihilations of massive dark matter particles of the WIMPs type. Lighter dark matter candidates, axion-like particles (ALP), could convert into photons, and vice versa, in magnetic fields leaving an oscillation imprint in the gamma-ray spectra of active galactic nuclei (AGN).
The H.E.S.S. observatory located in Namibia is composed of five atmospheric Cherenkov effect imaging telescopes. It is designed to detect gamma rays from a few tens of GeV to several tens of TeV. The Galactic Center region is observed by H.E.S.S. for twenty years. These observations made it possible to detect the first Galactic Pevatron and place the strongest constraints to date on the annihilation cross section of dark matter particles in the TeV mass range. The future CTA observatory will be deployed on two sites, one in La Palma and the other in Chile. The latter composed of more than 50 telescopes will provide an unprecedented scan of the region on the Galactic Center.
The proposed work will focus on the analysis and interpretation of H.E.S.S observations. carried out in the Galactic Center region for the search for diffuse emissions (populations of unresolved sources, massive dark matter) as well as observations carried out towards a selection of active galactic nuclei for the search for ALPs constituting dark matter. These new analysis frameworks will be implemented for the future CTA analyses. Involvement in taking H.E.S.S. data. is expected.

University / doctoral school

PHENIICS (PHENIICS)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

MOULIN Emmanuel emmanuel.moulin@cea.fr
CEA
DRF/IRFU/DPhP/GAP
CEA Saclay
DRF/Irfu/DPhP
Bâtiment 141, Pièce 149A
91191 Gif-sur-Yvette
01 69 08 29 60

Tutor / Responsible thesis director

MOULIN Emmanuel emmanuel.moulin@cea.fr
CEA
DRF/IRFU/DPhP/GAP
CEA Saclay
DRF/Irfu/DPhP
Bâtiment 141, Pièce 149A
91191 Gif-sur-Yvette
01 69 08 29 60

En savoir plus