General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DRF-25-0818
Direction
DRF
Thesis topic details
Category
Condensed Matter Physics, chemistry, nanosciences
Thesis topics
Silver nanowires synthesized from end-of-life solar panels for CO2 reduction and transparent electrodes
Contract
Thèse
Job description
Silver nanowires (AgNW) networks are remarkable materials with both the highest electrical and thermal conductivity at ambient temperature, and a good chemical stability. They are used in transparent electrodes, for instance in organic solar cells, heating films or electrochromic devices. Their synthesis has been upscaled at the industrial level with high yield and reproducibility. More recently, they also found promising applications in low-emissivity layers on windows, and in catalysis of CO2 reduction at ambient temperature as a selective electrocatalyst.
In this PhD project, we will turn to recycled sources of silver from dismantled end-of-life silicon solar panels for the synthesis of AgNWs, in a “green chemistry” approach. The quality of the nanomaterial will be checked directly in two relevant devices, namely IR-low-emissivity films for reduction of heat loss, and electroreduction of CO2 for the production of e-fuels. The project will focus on understanding the fundamental basis of the impact of impurities on the synthesis of AgNWs, the physical properties of the AgNW networks, their stability under electrical stress or chemical wear, and their performance as active material in the devices.
The work will take place in Grenoble, the second scientific hub in France. The PhD student will be hired by CEA, a major French research institution with a high focus on alternative energies. He/she will join the fundamental research lab SyMMES, expert in nanomaterial design and energy devices such as solar cells, batteries and electrolyzers. She/he will work in co-supervision in the partner lab LMGP expert in materials science, synthesis and implementation at Grenoble INP. SYMMES and LMGP belong to University Grenoble Alpes and host widely international teams. The project will be actively supported by a local industrial recycling company.
Applicants should hold a Master 2 degree in chemistry, physics or materials science with skills in nanomaterials, electrochemistry or physical chemistry and in basic science for energy. Good English proficiency and a strong interest for innovation and collaborative work are expected.
University / doctoral school
Chimie et Sciences du Vivant (EDCSV)
Université Grenoble Alpes
Thesis topic location
Site
Grenoble
Requester
Position start date
01/10/2025
Person to be contacted by the applicant
CHENEVIER Pascale
pascale.chenevier@cea.fr
CEA
DRF/IRIG//SYMMES
IRIG, SYMMES
CEA Grenoble
17, rue des Martyrs
38054 Grenoble cedex 9
04 38 78 07 21
Tutor / Responsible thesis director
CHENEVIER Pascale
pascale.chenevier@cea.fr
CEA
DRF/IRIG//SYMMES
IRIG, SYMMES
CEA Grenoble
17, rue des Martyrs
38054 Grenoble cedex 9
04 38 78 07 21
En savoir plus
https://www.symmes.fr/Pages/Pascale-Chenevier.aspx
https://www.symmes.fr/
https://lmgp.grenoble-inp.fr/fr/annuaire/m-bellet-daniel