Pause
Read
CEA vacancy search engine

Simulation of the evolution of dislocation microstructures in UO2: impact of dislocation climbing at hig


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DES-25-0069  

Thesis topic details

Category

Engineering science

Thesis topics

Simulation of the evolution of dislocation microstructures in UO2: impact of dislocation climbing at high temperature

Contract

Thèse

Job description

Carbon neutrality requires the development of low-carbon energy production systems, including nuclear power. The safety analysis of nuclear reactors requires the containment of fission products in all operating conditions, including the integrity of the first barrier made up of the fuel elements. For rod-type designs, which consist of a stack of fuel pellets in a metallic cladding, the mechanical behavior of uranium dioxide (UO2), pellet material, plays an important role in the cladding integrity assessment. During power transients, fuel-cladding contact increases mechanical stresses on the cladding, and fuel creep can accommodate swelling deformations, thereby reducing the stresses induced the cladding. One of the challenges is to understand and predict this phenomenon of UO2 creep, and in particular the mechanisms that drive it at the polycrystalline microstructural scale.
The main objective of the thesis will be to provide simulation methods and reference results in support of multi-scale modeling of the mechanical behavior of fuel at high-temperature, which is highly dependent on dislocation climbing mechanisms. To this end, a computational scheme will be developed, based on the coupling of a dislocation dynamics code (NUMODIS) and a code for solving nonlinear partial differential equations by FFT (AMITEX-FFTP), in order to describe the evolution of a dislocation microstructure (NUMODIS) under the effect of dislocation climbing induced by vacancy diffusion (AMITEX-FFTP). Simulations based on this approach will then be used to quantify the recovery of stored dislocation density with the effect of climbing mechanisms in different configurations (temperatures, stresses, etc.). Ultimately, this work will improve and validate the existing micromechanical modeling implemented in the CEA's PLEIADES simulation platform.
This thesis will be carried out under the joint supervision of the Département d'Etude des Combustibles (Institut IRESNE, CEA Cadarache) and the Département de Recherche sur les Matériaux et la Physico-chimie (Institut ISAS, CEA Saclay), and in collaboration with IM2NP at Aix Marseille Université. The thesis work will be carried out at the LM2C (Cadarache) and LC2M (Saclay) laboratories, in an environment that provides access to extensive expertise in multi-scale materials modeling. The research work will be promoted through publications and participation in international conferences in the materials field.

University / doctoral school

Sciences pour l’Ingénieur : Mécanique, Physique, Micro et Nanoélectronique (SIMPMN)
Aix-Marseille Université

Thesis topic location

Site

Cadarache

Requester

Position start date

01/11/2024

Person to be contacted by the applicant

MICHEL Bruno bruno.michel@cea.fr
CEA
DES/DEC/SESC/LM2C
DEC/SESC/LSC
bat 151
Centre de Cadarache
13108 Saint Paul Lez Durance

04-42-25-34-73

Tutor / Responsible thesis director

MICHEL Bruno bruno.michel@cea.fr
CEA
DES/DEC/SESC/LM2C
DEC/SESC/LSC
bat 151
Centre de Cadarache
13108 Saint Paul Lez Durance

04-42-25-34-73

En savoir plus