Pause
Read
CEA vacancy search engine

Space-time Modulated Electromagnetic Metasurfaces for Multi-functional Energy-Efficient Wireless Systems


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DRT-25-0549  

Direction

DRT

Thesis topic details

Category

Technological challenges

Thesis topics

Space-time Modulated Electromagnetic Metasurfaces for Multi-functional Energy-Efficient Wireless Systems

Contract

Thèse

Job description

Next-generation (XG) wireless systems envision an unprecedented network densification and the efficient use of the near-millimeter-wave (mmW) spectrum. Disruptive concepts are required to minimize the number of antenna systems and their power consumption. Reconfigurable intelligent surfaces (RISs) can provide high-gain beam-forming using simple devices (e.g. p-i-n diodes) to control their scattering properties of their unit-cells. However, the efficiency of an RIS and the wireless functions it can simultaneously realize, are bound by its inherent linearity and reciprocity.
Space-time modulated metasurfaces (STMMs) have recently emerged as a beam-forming solution overcoming fundamental limits of linear time-invariant systems. Leveraging an additional time-variation of the unit-cell response, with respect to RISs, an STMM can tailor at the same time angular and frequency spectra of the radiated fields, without using multiple active circuits as in current systems.
Most models for the design of STMMs are oversimplified and consider 1-D modulations in quasi-static temporal regime. The impact of spatial discretization and phase quantization is overlooked. The few reported prototypes are often electrically small, with a coarse (half-a-wavelength) period. Most demonstrators operate in reflection, below 17 GHz and enable only a 1-bit phase resolution. Independent far-field beam-steering at several frequencies has been proved in a single scan plane.
This Ph.D. thesis aims at modelling, designing and demonstrating electrically large and multi-functional transmissive STMM antennas with enhanced phase resolution and beam-forming capabilities. Efficient numerical models will enable the computation of the fields scattered by a STMM in far- and near-field regions, for arbitrary spatial and time modulation periods. Holographic and compressive sensing techniques will be proposed to jointly optimize the metasurface phase profile and the time-modulation waveforms, enabling harmonic beam-shaping. A thorough study of the effect of phase resolution, STMM period and time-modulation frequency on the performance, power consumption and complexity of the control electronics will be provided.
A transmissive STMM prototype based on p-i-n diodes and enabling a 2-bit phase resolution will be realized for the first time, building on the group background on space-modulated electronically reconfigurable flat lens antennas. It will work in a frequency range suited to terrestrial and satellite networks (17-31 GHz). Multiple antenna functionalities will be experimentally characterized using the same prototype, such as: (i) simultaneous and non-reciprocal 2-D beam-forming at different harmonics of the time-modulating signals, in either far-field or near-field region; (ii) pattern shaping at the fundamental frequency, using optimized time-sequences to increase the effective phase resolution.
The fundamental and experimental contributions of this research will broaden the physical insight on time-modulated metasurfaces and increase the maturity of this technology for energy-efficient smart antennas with applications to wireless networks and integrated communication and sensing systems. An intense dissemination activity in high-impact scientific journals of electrical engineering and applied physics is expected, given the novelty of the topic and the growing interest it triggers in several communities.

University / doctoral school

Sciences Mécanique, Acoustique, Electronique et Robotique de Paris (SMAER)
Sorbonne Université

Thesis topic location

Site

Grenoble

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

FOGLIA MANZILLO Francesco francesco.fogliamanzillo@cea.fr
CEA
DRT/DSYS/STSF/LAPCI
MINATEC Campus,
17 rue des Martyrs,
38054 Grenoble.
+33 (0)4 38 78 64 04

Tutor / Responsible thesis director

VALERIO Guido guido.valerio@sorbonne-universite.fr
Sorbonne Université
Dept. GeePs - Génie électrique et électronique de Paris
Campus Pierre et Marie Curie, Aile 65-66 - 4 place Jussieu, 75252 Paris CEDEX 05 - France


+33 1 44 27 42 36

En savoir plus

https://scholar.google.com/citations?user=uObyCBwAAAAJ&hl=it
https://www.leti-cea.fr/cea-tech/leti/Pages/Accueil.aspx
https://sites.google.com/site/guidovalerio/home