Pause
Read
CEA vacancy search engine

Study of fracture toughness - microstructure relationships of new high performance oxide dispersion stre


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DES-24-0234  

Thesis topic details

Category

Engineering science

Thesis topics

Study of fracture toughness - microstructure relationships of new high performance oxide dispersion strengthened steels

Contract

Thèse

Job description

ODS steels are considered for the development of components for fourth generation reactors. They offer high tensile and creep strength and good resistance to irradiation [1-3]. This high level of reinforcement is accompanied by a reduction in ductility and toughness. Tube shaping changes the microstructure, so the properties of the material in its final form should be evaluated. The work of B. Rais [4] made it possible to compare the different tests and to develop a test and an analysis method for measuring toughness on thin tubes.

This present PhD will use this new test to evaluate the toughness of various ODS grades. Varied microstructures from historical and recent productions will assessed to identify the mechanisms, the key parameters driving toughness and to identify the microstructural parameters which drive the response of the material. In this work we will be interested in ferritic / martensitic grades, some of which come from a manufacturing process which is the subject of a patent application [5-6] and for which we observe for the first time remarkable properties in resilience, associated with good hot mechanical properties.

The study will be based on a comparison of experience and finite element modeling. This applied research work will allow the student to acquire solid skills in fracture mechanics and fine characterization of materials (SEM, EBSD, etc.). A good understanding of the mechanical properties/microstructure relationships will make it possible to understand the origin of the observed properties and to propose new optimizations on the microstructures to improve the mechanical behavior and/or the shaping of the material.

Student profile: Engineer or M2 Mechanics/Materials

University / doctoral school

Ecole Doctorale Sciences des Métiers de l’Ingénieur (SMI )
MINES ParisTech

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2024

Person to be contacted by the applicant

Garnier Jérôme jerome.garnier@cea.fr
CEA
DES/DRMP//LC2M

Tutor / Responsible thesis director

BESSON Jacques jacques.besson@mines-paristech.fr
CNRS affecté à l’Ecole des Mines de Paris
Centre des Matériaux UMR 7633
Centre des Matériaux
Mines Paris, Paristech
CNRS UMR 7633
BP 87
F-91003 Evry Cedex, France
01 60 76 30 37

En savoir plus