Pause
Read
CEA vacancy search engine

Three-Dimensional Fine Measurements of Boundary Layers in Turbulent Flows within PWR Fuel Assemblies


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DES-26-0035  

Thesis topic details

Category

Engineering science

Thesis topics

Three-Dimensional Fine Measurements of Boundary Layers in Turbulent Flows within PWR Fuel Assemblies

Contract

Thèse

Job description

The production of electricity through nuclear energy is a key pillar of the energy transition due to its low carbon footprint. In a continuous effort to improve safety and performance, the development of new knowledge and tools is essential.

Fuel assemblies, which are components of a reactor core, face various challenges involving thermo-hydraulic phenomena. These include flow-induced vibrations, power transmission associated with critical fluxes, and fluid-structure interactions in cases of assembly deformation or seismic excitation. In all these situations, the behavior of the fluid near the wall plays a crucial role. The use of Computational Fluid Dynamics (CFD) allows for the simulation of these phenomena with the goal of obtaining predictive tools. The experimental validation needs required by today's simulations push classical measurement techniques to their limits. There is a strong need for refined experimental data in both time and space on complex geometries.

This doctoral project aims to address this need by leveraging the latest advancements in optical measurements for turbulent flows. By combining index matching techniques, panoramic cameras, and Particle Tracking Velocimetry (PTV), it is possible to measure the velocity field in a representative volume (approximately 1 cm³) with a spatial density of around 10 micrometers. This allows for the simultaneous measurement of flow in the boundary layer and the hydraulic channel.

The thesis will primarily be conducted at the Hydromechanics Laboratory (LETH) at the IRESNE Institute (CEA Cadarache) and will involve collaboration with the Thermo-Fluids Lab at George Washington University. Travel to the USA will be required.

University / doctoral school

Sciences pour l’Ingénieur : Mécanique, Physique, Micro et Nanoélectronique (SIMPMN)
Aix-Marseille Université

Thesis topic location

Site

Cadarache

Requester

Position start date

01/10/2026

Person to be contacted by the applicant

RICCIARDI Guillaume guillaume.ricciardi@cea.fr
CEA
DEN/DTN/STCP/LETH
CEN Cadarache
DEN/DTN/STCP/LETH
bat. 727
saint paul lez durance cedex
04 42 25 33 20

Tutor / Responsible thesis director

RICCIARDI Guillaume guillaume.ricciardi@cea.fr
CEA
DEN/DTN/STCP/LETH
CEN Cadarache
DEN/DTN/STCP/LETH
bat. 727
saint paul lez durance cedex
04 42 25 33 20

En savoir plus