Pause
Read
CEA vacancy search engine

Understanding the mechanisms of oxidative dissolution of (U,Pu)O2 in the presence of platinum group meta


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DES-25-0212  

Thesis topic details

Category

Condensed Matter Physics, chemistry, nanosciences

Thesis topics

Understanding the mechanisms of oxidative dissolution of (U,Pu)O2 in the presence of platinum group metals

Contract

Thèse

Job description

The treatment of MOx fuel, composed of a mixed uranium and plutonium oxide (U,Pu)O2, is aimed at recycling plutonium. Plutonium dioxide (PuO2) is notably difficult to dissolve in concentrated nitric acid. However, by introducing a highly oxidizing agent, such as Ag(II), into the nitric acid, plutonium can be solubilized with fast dissolution kinetics—a process known as oxidative dissolution. The fission products present in irradiated MOx, particularly platinum group metals, can potentially impair the effectiveness of plutonium’s oxidative dissolution through side reactions. For the industrial deployment of this method, it is therefore crucial to understand how platinum group metals influence the dissolution kinetics. Yet, there is currently very limited data on this subject.

This thesis aims to address this knowledge gap. The proposed research involves a parametric experimental study of increasing complexity: initially, the impact of platinum group metals on Ag(II) consumption will be investigated separately, followed by their effect during the dissolution of (U,Pu)O2. These findings will enable the development of a kinetic model for the dissolution process based on the studied parameters.

By the end of this thesis, the candidate, with a strong background in physical or inorganic chemistry, will have gained expertise in a wide range of experimental techniques and advanced modeling methods. This dual competence will open up numerous career opportunities in academic research or industrial R&D, both within and beyond the nuclear sector.

University / doctoral school

Sciences, Ingénierie, Santé (EDSIS)

Thesis topic location

Site

Marcoule

Requester

Position start date

01/10/2025

Person to be contacted by the applicant

MULLER Julie julie.muller@cea.fr
CEA
DES/ISEC/DMRC/SPTC/LDCI
DES/ISEC/DMRC/SPTC/LDCI
CEA Marcoule
BP 17171
30207 Bagnols sur Cèze cedex
04 66 79 57 73

Tutor / Responsible thesis director

FAVERGEON Loïc loic.favergeon@mines-stetienne.fr
MINES Saint-Étienne
UMR CNRS/LGF 5307 - SPIN/PTSI
Campus de Saint-Étienne
158, cours Fauriel
F-42023 Saint-Étienne cedex 2
+33 (0)4 77 42 02 93

En savoir plus