Pause
Read
CEA vacancy search engine

Monte Carlo methods for the adjoint transport equation: application to radiation shielding problems

Previous vacancy
 0 / 547 vacancy 
Next vacancy

Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DES-24-0611  

Thesis topic details

Category

Engineering science

Thesis topics

Monte Carlo methods for the adjoint transport equation: application to radiation shielding problems

Contract

Thèse

Job description

The Monte Carlo method is the reference approach for simulating the transport of neutrons and photons, particularly in the field of radiation shielding, due to the very low number of approximations that it introduces. The usual Monte Carlo strategy is based on the sampling of a large number of particle histories, which start from a source, follow the physical laws of collision available in nuclear data libraries and explore the geometry of the system : the contributions of the particles to the response of interest (e.g. a count rate in a detector), averaged over all simulated stories, estimate the value predicted by the Boltzmann equation. If the detector region is 'small', statistical convergence of the standard Monte Carlo approach becomes very difficult, because only an extremely limited number of stories will be able to contribute. It then becomes advantageous to use Monte Carlo methods for the solution of the adjoint transport equation: the histories of the particles are sampled from the detector backwards, and the collection region is the source of the starting problem (which is typically assumed to be “large” relative to the detector). This approach, simple in principle, offers the possibility of considerably reducing the statistical uncertainty. However, the adjoint Monte Carlo methods present scientific obstacles that are both practical and conceptual: how to sample the physical laws of collision “backwards”? How to control the numerical stability of adjoint simulations? In this thesis, we will explore different strategies in order to provide answers to these questions, in view of applying these methods to radiation shielding problems. The practical implications of this work could open up very encouraging perspectives for the new TRIPOLI-5® simulation code.

University / doctoral school

PHENIICS (PHENIICS)
Paris-Saclay

Thesis topic location

Site

Saclay

Requester

Position start date

01/10/2024

Person to be contacted by the applicant

Mancusi Davide davide.mancusi@cea.fr
CEA
DES/DM2S/SERMA/LTSD
CEA/Saclay
DES/ISAS/DM2S/SERMA/LTSD
Batiment 470
Gif-sur-Yvette
91191
01 6908 7872

Tutor / Responsible thesis director

ZOIA Andrea andrea.zoia@cea.fr
CEA
DES/DM2S/SERMA/LTSD
Commissariat à l’Énergie Atomique et aux Énergies Alternatives
Centre de Saclay
DES/ISAS/DM2S/SERMA/LTSD
Bat 470 - PC 212
91191 Gif sur Yvette Cedex, France


01 69 08 89 49

En savoir plus


https://www.cea.fr/energies/tripoli-4