Pause
Read
CEA vacancy search engine

Medium temperature PEMFC: impact of the drying processes of catalyst layers on their microstructure and


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DES-24-0847  

Thesis topic details

Category

Technological challenges

Thesis topics

Medium temperature PEMFC: impact of the drying processes of catalyst layers on their microstructure and performance

Contract

Thèse

Job description

- The Proton Exchange Membrane Fuel Cell (PEMFC, using H2 and air as fuels) is a relevant solution for the production of low-carbon electrical energy. However, it is necessary to further improve its performance and durability, and reduce its cost.
- In this spirit, the national French project PEMFC95 aims at developing and characterizing PEMFC materials able to operate sustainably at 95°C (standard is 80°C) and thus more suitable and attractive for Heavy-Duty application (buses, trucks, trains…). It is supported by the French ‘Programme et Equipements Prioritaires de Recherche sur l’hydrogène décarboné’ (PEPR-H2).
- The component considered in this thesis is the catalyst layer (CL) which is a mixture of Pt/C (platinum onto carbon particles), H+ conductive ionomer, and solvents. The optimization of the CL in terms of spatial distribution of Pt/C, ionomer and pores is crucial for improving performance and durability. This is directly linked to the ink formulation and to the manufacturing process used to produce the CL. Nevertheless, the relation between the CL manufacturing process and parameters, its structure and components’ distribution, and the performance and durability of the PEMFC, is still an open question. The aim of your Ph.D. thesis is to progress on this, focusing on the drying step of the bar coater manufacturing process.
- You will contribute to the PEMFC95 project thanks to your scientific/technological developments to understand the impact of the drying process and parameters on the microstructure of CL and make the link with the performance and durability of PEMFC.
- You will have interactions and meetings with the partners of the project and with CNRS/IMFT (Toulouse), specialist of transport phenomenon in porous media.
You will be hired by CEA-Grenoble and work with permanent and non-permanent staff in the laboratory, (male and female) engineers and technicians, to discuss your ideas, perform your experiments and analyze the data. You will be managed by Joël Pauchet as your thesis director, specialist of porous media and their modeling for PEMFC, and Christine Nayoze-Coynel for her knowledge on the CL and MEA manufacturing.

More information are accessible in the attached file and/or Under request.

University / doctoral school

Ingénierie - Matériaux - Environnement - Energétique - Procédés - Production (IMEP2)
Université Grenoble Alpes

Thesis topic location

Site

Grenoble

Requester

Position start date

01/10/2024

Person to be contacted by the applicant

NAYOZE Christine christine.nayoze@cea.fr
CEA
DRT/DEHT//LCP
CEA Grenoble
DRT / LITEN / DTH / LCEPM
17 Rue des Martyrs
38 054 Grenoble Cedex
04 38 78 61 03

Tutor / Responsible thesis director

PAUCHET Joel joel.pauchet@cea.fr
CEA
DES/DEHT//LMEA
CEA Grenoble
17 rue des Martyrs
38054 CEA/Grenoble, France
04 38 78 52 96

En savoir plus


https://liten.cea.fr
https://www.imft.fr/