Pause
Read
CEA vacancy search engine

Impact of fission products and microstructure on the oxidation mechanisms of (U,Pu)O2 fuels


Thesis topic details

General information

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

SL-DES-25-0128  

Thesis topic details

Category

Condensed Matter Physics, chemistry, nanosciences

Thesis topics

Impact of fission products and microstructure on the oxidation mechanisms of (U,Pu)O2 fuels

Contract

Thèse

Job description

The widespread use of MOX fuels (based on (U,Pu)O2 mixed oxides) in nuclear reactors is an option currently being studied in France. Such a strategy could help to stabilise the plutonium inventory while conserving natural uranium resources. Such scenario involves the multi-recycling of plutonium, which requires an upgrade of the existing infrastructures to enable the reprocessing of spent MOX fuel at industrial scale. Consequently, the development of innovative processes and related basic research is then imperative.
The oxidation of MOX spent fuel by ad hoc thermal treatment could overcome a major technological barrier identified, i.e. how to separate the fuel from its cladding prior to the dissolution step. However, there is limited data available on the oxidation of (U,Pu)O2 and even less has investigated the impact of fission products and the fuel microstructure properties. The aim of this PhD thesis is to help fill this gap. The selected student will study (U,Pu)O2 samples with a microstructure identical to that of industrial MOX fuels, as well as (U,Pu)O2 doped with inactive fission products, thus simulating irradiated fuels, as shown in a thesis defended in the laboratory. The experimental work will focus on oxidation experiments coupled with in-situ and multi-scale analyses using laboratory technics and synchrotron radiation-based characterizations. These results will lead to the proposal of a phenomenological description linking the kinetics of (U,Pu)O2 oxidation with the fission products chemistry, the O2 partial pressure and the temperature and duration of the thermal treatment.
By the end of this PhD, the graduate student with a background in physical chemistry of materials will have developed expertise in a broad range of experimental techniques. These skills will open up many career opportunities in academic research or industrial R&D, both within and beyond the nuclear sector.

University / doctoral school

Sciences Chimiques Balard (EDSCB)
Montpellier

Thesis topic location

Site

Marcoule

Requester

Position start date

01/11/2025

Person to be contacted by the applicant

MARTIN Philippe Marie philippe-m.martin@cea.fr
CEA
DES/DMRC/SASP/LMAT
CEN Marcoule
DES/ISEC/DMRC/SASP/LMAT
Bât 166
30207 Bagnols sur cèze

0466795503

Tutor / Responsible thesis director

MARTIN Philippe Marie philippe-m.martin@cea.fr
CEA
DES/DMRC/SASP/LMAT
CEN Marcoule
DES/ISEC/DMRC/SASP/LMAT
Bât 166
30207 Bagnols sur cèze

0466795503

En savoir plus