General information
Organisation
The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.
Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.
The CEA is established in ten centers spread throughout France
Reference
SL-DRF-25-0963
Direction
DRF
Thesis topic details
Category
Theoretical physics
Thesis topics
Computational quantum transport for extremely large systems
Contract
Thèse
Job description
Quantum transport is the study of how electrons propagate through conductors while retaining their wave-like coherence. It explains phenomena related to the wave nature of electrons such as conductance quantization, Aharonov-Bohm effect, weak localization, universal conductance fluctuations, and many others. Computational quantum transport is almost as old as the associated theory, however the existing approaches struggle with system sizes large enough to describe relevant experiments, especially in three dimensions. In this PhD project, we will build on a recent breakthrough in quantum-inspired approaches (https://scipost.org/SciPostPhys.18.3.104) to develop quantum transport methods that scale well beyond existing ones. Our working hypothesis is that the scattering wave function at the core of quantum transport theory can be strongly compressed using a tensor network representation. This approach is analogous to that taken for the quantum many-body problem in the density matrix renormalization group framework. In a second stage, we will apply this method in 2D to various difficult problems related to graphene-based electronic interferometers and in 3D to topological materials. This project requires good mathematical skills and experience with scientific programming. The work will involve theoretical as well as numeric aspects.
University / doctoral school
Ecole Doctorale de Physique de Grenoble (EdPHYS)
Université Grenoble Alpes
Thesis topic location
Site
Grenoble
Requester
Position start date
01/11/2025
Person to be contacted by the applicant
GROTH Christoph
christoph.groth@cea.fr
CEA
DRF/IRIG//PHELIQS
PHELIQS-IRIG-CEA
17 rue des Martyrs
38054 Grenoble CEDEX 9
04 38 78 33 81
Tutor / Responsible thesis director
WAINTAL Xavier
xavier.waintal@cea.fr
CEA
DRF/INAC/PHELIQS/GT
CEA - Bât C5
17 rue des Martyrs
38054 GRENOBLE Cedex 9
0438780327
En savoir plus
https://www.pheliqs.fr/Pages/GT/Presentation.aspx
https://tensor4all.org/