Pause
Lecture
Moteur de recherche d'offres d'emploi CEA

L'exploitation des données NIKA2 de galaxies proches : une fenêtre sur l'évolution des nanoparticules in


Détail de l'offre

Informations générales

Entité de rattachement

Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.

Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un socle de recherche fondamentale. Le CEA s'engage depuis plus de 75 ans au service de la souveraineté scientifique, technologique et industrielle de la France et de l'Europe pour un présent et un avenir mieux maîtrisés et plus sûrs.

Implanté au cœur des territoires équipés de très grandes infrastructures de recherche, le CEA dispose d'un large éventail de partenaires académiques et industriels en France, en Europe et à l'international.

Les 20 000 collaboratrices et collaborateurs du CEA partagent trois valeurs fondamentales :

• La conscience des responsabilités
• La coopération
• La curiosité
  

Référence

SL-DRF-24-0323  

Direction

DRF

Description du sujet de thèse

Domaine

Physique corpusculaire et cosmos

Sujets de thèse

L'exploitation des données NIKA2 de galaxies proches : une fenêtre sur l'évolution des nanoparticules interstellaires

Contrat

Thèse

Description de l'offre

Les nanoparticules interstellaires sont une composante cruciale des galaxies, car elles absorbent et ré-émettent le rayonnement stellaire, contrôlent le chauffage et le refroidissement du gaz, catalysent des réactions chimiques et régulent la formation d'étoiles. L'abondance, la composition, la structure et la distribution de taille de ces petites particules solides, qui sont mélangées au gaz interstellaire, sont cependant mal connues. Elles évoluent en effet dans le milieu interstellaire et présentent des différences systématiques parmi les galaxies. Il est donc crucial d'obtenir des contraintes détaillées et analysées en détail sur ces propriétés. Les progrès dans ce domaine sont absolument nécessaires pour interpréter correctement les observations de régions de formations d'étoiles proches et les galaxies distantes, ainsi que pour modéliser précisément la physique interstellaire.

Les propriétés optiques à grande longueur d'onde du mélange de nanoparticules, dans le domaine millimétrique, ont un intérêt particulier. Cette fenêtre spectrale est actuellement la moins bien connue. Pourtant, l'opacité millimétrique des grains a une importance centrale, puisque les estimations de masse basée sur l'ajustement de la distribution spectrale d'énergie reposent principalement sur cette quantité. Un biais ou une évolution systématique de l'opacité millimétrique se traduira directement dans une inexactitude dans la masse de nanoparticules, qui est souvent utilisée pour inférer la masse de gaz d'une région ou d'une galaxie.

Notre programme de temps garanti, IMEGIN (Interpreting the Millimeter Emission of Galaxies at IRAM with NIKA2 ; resp. Madden ; 200 heures), avec la caméra NIKA2 au radiotélescope de 30-m de l'IRAM, a complètement cartographié 20 galaxies proches à 1.2 mm et 2 mm. De plus, notre temps de programme ouvert, SEINFELD (Submillimeter Excess In Nearby Fairly-Extended Low-metallicity Dwarfs ; resp. Galliano ; 36 heures), est en train de compléter notre échantillon à faible métallicité (la métallicité étant la fraction de masse des éléments plus lourds que l'hélium). Ces données nouvelles et exceptionnelles sont les première images de bonnes qualité de galaxies résolues aux longueurs d'onde millimétriques, et nous permettent d'étudier la manière dont varient les propriétés des grains avec les conditions physiques.

Le but de ce projet de thèse est de combiner ces observations avec d'autres données multi-longueurs d'onde, déjà existantes (en particulier, WISE, Spitzer et Herschel), dans le but de démontrer comment l'opacité millimétrique dépend des conditions physiques locales. La première étape consistera à traiter et homogénéiser les données. L'étudiant aura aussi l'opportunité de participer à notre campagne d'observations à Pico Veleta. Dans un second temps, l'étudiant modélisera l'émission spatialement résolue, en utilisant notre code bayésien hiérarchique à l'état de l'art, HerBIE. Cela permettra à l'étudiant de produire des cartes des propriétés des nanoparticules et de les comparer avec les cartes des conditions physiques. Finalement, ces résultats seront utilisés pour modéliser les échelles de temps caractéristiques d'évolution, sous les effets du champ de rayonnement et de l'accrétion de gaz. Les mesures de laboratoire récemment produites par le groupe de Toulouse seront mises à profit. Ce travail sera effectué au sein de la collaboration internationale IMEGIN.

Université / école doctorale

Astronomie et Astrophysique d’Île de France (ED A&A)
Paris-Saclay

Localisation du sujet de thèse

Site

Saclay

Critères candidat

Formation recommandée

Master d'astrophysique ou équivalent

Demandeur

Disponibilité du poste

01/10/2024

Personne à contacter par le candidat

Galliano Frédéric frederic.galliano@cea.fr
CNRS
UMR AIM
DAp, bâtiment 709
Orme des Merisiers
Batiment 709
Gif-sur-Yvette
91191
01 69 08 18 21

Tuteur / Responsable de thèse

Galliano Frédéric frederic.galliano@cea.fr
CNRS
UMR AIM
DAp, bâtiment 709
Orme des Merisiers
Batiment 709
Gif-sur-Yvette
91191
01 69 08 18 21

En savoir plus

https://irfu.cea.fr/Pisp/frederic.galliano/
https://irfu.cea.fr/dap/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=973