Pause
Lecture
Moteur de recherche d'offres d'emploi CEA

Apprentissage des modèles du monde pour les agents autonomes avancés


Détail de l'offre

Informations générales

Entité de rattachement

Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.

Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un socle de recherche fondamentale. Le CEA s'engage depuis plus de 75 ans au service de la souveraineté scientifique, technologique et industrielle de la France et de l'Europe pour un présent et un avenir mieux maîtrisés et plus sûrs.

Implanté au cœur des territoires équipés de très grandes infrastructures de recherche, le CEA dispose d'un large éventail de partenaires académiques et industriels en France, en Europe et à l'international.

Les 20 000 collaboratrices et collaborateurs du CEA partagent trois valeurs fondamentales :

• La conscience des responsabilités
• La coopération
• La curiosité
  

Référence

SL-DRT-25-0644  

Direction

DRT

Description du sujet de thèse

Domaine

Défis technologiques

Sujets de thèse

Apprentissage des modèles du monde pour les agents autonomes avancés

Contrat

Thèse

Description de l'offre

Les modèles du monde sont des représentations internes de l'environnement externe qu'un agent peut utiliser pour interagir avec le monde réel. Ils sont essentiels pour comprendre les lois physiques qui régissent les dynamiques du monde réel, faire des prédictions et planifier des actions à long terme. Les modèles du monde peuvent être utilisés pour simuler des interactions réelles et améliorer l'interprétabilité et l'explicabilité du comportement d'un agent dans cet environnement, ce qui en fait des composants clés pour les modèles avancés d'agents autonomes.

Néanmoins, la construction d'un modèle du monde précis reste un défi. L'objectif de cette thèse de doctorat est de développer une méthodologie pour apprendre les modèles du monde et étudier leur utilisation dans le contexte de la conduite autonome, en particulier pour la prévision des mouvements et le développement d'agents autonomes pour la navigation.

Université / école doctorale

Sciences et Technologies de l’Information et de la Communication (STIC)
Paris-Saclay

Localisation du sujet de thèse

Site

Saclay

Demandeur

Disponibilité du poste

01/10/2024

Personne à contacter par le candidat

RABARISOA Jaonary jaonary.rabarisoa@cea.fr
CEA
DRT/DIASI//LVA
CEA Saclay - Nano-INNOV
Bat 861 - PC 173 - F91191 Gif Sur Yvette Cedex
France
00169080129

Tuteur / Responsable de thèse

PHAM Quoc Cuong quoc-cuong.pham@cea.fr
CEA
DRT/DIASI/SIALV/LVA
CEA SACLAY - Nano-INNOV
Bât. 861 - Point courrier 173
91191 Gif-sur-Yvette Cedex
0169082716

En savoir plus