Pause
Lecture
Moteur de recherche d'offres d'emploi CEA

Inférence neuronale bayésienne à partir de transistors ferroélectriques à mémoire


Détail de l'offre

Informations générales

Entité de rattachement

Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.

Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un socle de recherche fondamentale. Le CEA s'engage depuis plus de 75 ans au service de la souveraineté scientifique, technologique et industrielle de la France et de l'Europe pour un présent et un avenir mieux maîtrisés et plus sûrs.

Implanté au cœur des territoires équipés de très grandes infrastructures de recherche, le CEA dispose d'un large éventail de partenaires académiques et industriels en France, en Europe et à l'international.

Les 20 000 collaboratrices et collaborateurs du CEA partagent trois valeurs fondamentales :

• La conscience des responsabilités
• La coopération
• La curiosité
  

Référence

SL-DRT-26-0266  

Direction

DRT

Description du sujet de thèse

Domaine

Défis technologiques

Sujets de thèse

Inférence neuronale bayésienne à partir de transistors ferroélectriques à mémoire

Contrat

Thèse

Description de l'offre

De nombreux systèmes critiques pour la sécurité intègrent désormais des fonctions d’intelligence artificielle devant opérer avec une consommation énergétique minimale et sous fortes incertitudes, notamment en contexte de données limitées. Or, les approches déterministes classiques de l’IA ne fournissent qu’une estimation ponctuelle des prédictions, sans quantification rigoureuse de la confiance, ce qui limite leur fiabilité en conditions réelles.

Cette thèse s’inscrit dans le domaine émergent de l’électronique bayésienne, où l’objectif est d’implémenter l’inférence probabiliste directement au niveau matériel, en exploitant la variabilité intrinsèque de nanodispositifs pour représenter et manipuler des distributions de probabilité. Si des mémristors ont déjà été utilisés pour réaliser des opérations d’inférence bayésienne, leurs contraintes en endurance et en énergie de programmation constituent un verrou majeur pour l’apprentissage embarqué.

L’objectif de cette thèse est d’explorer l’utilisation de transistors ferroélectriques à effet de champ (FeMFETs) comme briques élémentaires de réseaux de neurones bayésiens sur puce. Il s’agira de caractériser et modéliser l’aléa ferroélectrique exploitable pour l’échantillonnage et la mise à jour probabiliste, de développer des architectures de neurones et synapses bayésiens basées sur ces dispositifs, puis d’évaluer expérimentalement et au niveau système leur robustesse, leur efficacité énergétique et leur pertinence pour des applications critiques.

Université / école doctorale

Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Université Grenoble Alpes

Localisation du sujet de thèse

Site

Grenoble

Critères candidat

Formation recommandée

Master 2 microélectronique, nanotechnologie, sciences des matériaux, physique

Demandeur

Disponibilité du poste

01/10/2025

Personne à contacter par le candidat

RUMMENS François Francois.RUMMENS@cea.fr
CEA
DRT/DSCIN/DSCIN/LSTA
CEA LIST - Site Nano-INNOV Palaiseau, 8 Avenue de la Vauve
91120 Palaiseau

Tuteur / Responsable de thèse

VIANELLO Elisa elisa.vianello@cea.fr
CEA
DRT/DCOS//LDMC
CEA Leti MINATEC Campus
Laboratoire de Technologies Memoires Avancées
17, rue des Martyrs
38054 Grenoble CEDEX9
0438789092

En savoir plus