Informations générales
Entité de rattachement
Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.
Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un socle de recherche fondamentale. Le CEA s'engage depuis plus de 75 ans au service de la souveraineté scientifique, technologique et industrielle de la France et de l'Europe pour un présent et un avenir mieux maîtrisés et plus sûrs.
Implanté au cœur des territoires équipés de très grandes infrastructures de recherche, le CEA dispose d'un large éventail de partenaires académiques et industriels en France, en Europe et à l'international.
Les 20 000 collaboratrices et collaborateurs du CEA partagent trois valeurs fondamentales :
• La conscience des responsabilités
• La coopération
• La curiosité
Référence
SL-DRT-26-0266
Direction
DRT
Description du sujet de thèse
Domaine
Défis technologiques
Sujets de thèse
Inférence neuronale bayésienne à partir de transistors ferroélectriques à mémoire
Contrat
Thèse
Description de l'offre
De nombreux systèmes critiques pour la sécurité intègrent désormais des fonctions d’intelligence artificielle devant opérer avec une consommation énergétique minimale et sous fortes incertitudes, notamment en contexte de données limitées. Or, les approches déterministes classiques de l’IA ne fournissent qu’une estimation ponctuelle des prédictions, sans quantification rigoureuse de la confiance, ce qui limite leur fiabilité en conditions réelles.
Cette thèse s’inscrit dans le domaine émergent de l’électronique bayésienne, où l’objectif est d’implémenter l’inférence probabiliste directement au niveau matériel, en exploitant la variabilité intrinsèque de nanodispositifs pour représenter et manipuler des distributions de probabilité. Si des mémristors ont déjà été utilisés pour réaliser des opérations d’inférence bayésienne, leurs contraintes en endurance et en énergie de programmation constituent un verrou majeur pour l’apprentissage embarqué.
L’objectif de cette thèse est d’explorer l’utilisation de transistors ferroélectriques à effet de champ (FeMFETs) comme briques élémentaires de réseaux de neurones bayésiens sur puce. Il s’agira de caractériser et modéliser l’aléa ferroélectrique exploitable pour l’échantillonnage et la mise à jour probabiliste, de développer des architectures de neurones et synapses bayésiens basées sur ces dispositifs, puis d’évaluer expérimentalement et au niveau système leur robustesse, leur efficacité énergétique et leur pertinence pour des applications critiques.
Université / école doctorale
Electronique, Electrotechnique, Automatique, Traitement du Signal (EEATS)
Université Grenoble Alpes
Localisation du sujet de thèse
Site
Grenoble
Critères candidat
Formation recommandée
Master 2 microélectronique, nanotechnologie, sciences des matériaux, physique
Demandeur
Disponibilité du poste
01/10/2025
Personne à contacter par le candidat
RUMMENS François
Francois.RUMMENS@cea.fr
CEA
DRT/DSCIN/DSCIN/LSTA
CEA LIST - Site Nano-INNOV Palaiseau, 8 Avenue de la Vauve
91120 Palaiseau
Tuteur / Responsable de thèse
VIANELLO Elisa
elisa.vianello@cea.fr
CEA
DRT/DCOS//LDMC
CEA Leti MINATEC Campus
Laboratoire de Technologies Memoires Avancées
17, rue des Martyrs
38054 Grenoble CEDEX9
0438789092
En savoir plus