Pause
Lecture
Moteur de recherche d'offres d'emploi CEA

Magnéto-convection des étoiles de type solaire: émergence du flux et origine des taches stellaires


Détail de l'offre

Informations générales

Entité de rattachement

Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.

Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un socle de recherche fondamentale. Le CEA s'engage depuis plus de 75 ans au service de la souveraineté scientifique, technologique et industrielle de la France et de l'Europe pour un présent et un avenir mieux maîtrisés et plus sûrs.

Implanté au cœur des territoires équipés de très grandes infrastructures de recherche, le CEA dispose d'un large éventail de partenaires académiques et industriels en France, en Europe et à l'international.

Les 20 000 collaboratrices et collaborateurs du CEA partagent trois valeurs fondamentales :

• La conscience des responsabilités
• La coopération
• La curiosité
  

Référence

SL-DRF-26-0301  

Direction

DRF

Description du sujet de thèse

Domaine

Physique corpusculaire et cosmos

Sujets de thèse

Magnéto-convection des étoiles de type solaire: émergence du flux et origine des taches stellaires

Contrat

Thèse

Description de l'offre

Le Soleil et les étoiles de type solaire possèdent un magnétisme riche et variable. Nous avons pu mettre en évidence dans nos travaux récents sur les dynamos turbulentes convectives de ce type d' étoiles, une histoire magnéto-rotationelle de leur évolution séculaire. Les étoiles naissent active avec des cycles magnétiques courts, puis en décélérant par le freinage du à leur vent de particules magnétisé, leur cycle magnétique s'allonge pour devenir commensurable à celui du Soleil (d'une durée de 11 ans) et enfin pour les étoiles vivant suffisamment longtemps finir avec une perte de cycle et une rotation dite anti-solaire (équateur lent/poles rapides). L'accord avec les observations est excellent mais il nous manque un élément essentiel pour conclure: Quel role jouent les taches solaires/stellaires dans l'organisation du magnétisme de ces étoiles et sont-elles nécessaires à l'apparition d'un cycle magnétique, ce qui s'appelle 'le paradox des dynamos cycliques sans tache'. En effet, nos simulations HPC de dynamo solaire n'ont pas la résolution angulaire pour résoudre les taches et pourtant nous observons bien des cycles dans nos simulation de dynamos stellaires pour des nombres de Rossby < 1. Dès lors les taches sont-elle une simple manifestations de surface d'une auto-organisation interne du magnétisme cyclique de ces étoiles, ou jouent-elle un rôle déterminant. De plus, comment l'émergence de flux en latitude et la taille et intensité des taches se formant à la surface évoluent ils au cours de l'évolution magnéto-rotationelle de ces étoiles? Pour répondre à cette question essentielle en magnétisme des étoiles et du Soleil, il faut développer de nouvelles simulations HPC de dynamo stellaire en soutien aux missions spatiales Solar Orbiter et PLATO pour lesquelles nous sommes directement impliqués, permettant de s'approcher plus près de la surface et ainsi de mieux décrire le processus d'émergence de flux magnétique et la possible formation de taches solaires. Des tests récents montrant que des concentrations magnétiques inhibant la convection de surface localement se forment ab-initio dans des simulations avec un nombre de Reynolds magnétique plus grand et une convection de surface plus petites échelles nous encourage fortement à poursuivre ce projet au delà de l'ERC Whole Sun (finissant en Avril 2026). Grace au code Dyablo-Whole Sun que nous co-développons avec le IRFU/Dedip, nous désirons étudier en détails la dynamo convective, l'émergence de flux magnétique et la formation auto-cohérente de taches résolues, en utilisant sa capacité de raffinement de maillage adaptative et en variant les paramètres globaux stellaire comme le taux de rotation, l'épaisseur de la zone convective, et l'intensité de la convection de surface, afin de déterminer comment leur nombre, morphologie et latitude d'émergence changent et s'ils contribuent ou non à la fermeture de la boucle dynamo cyclique.

Université / école doctorale

Astronomie et Astrophysique d’Île de France (ED A&A)
Université de Paris

Localisation du sujet de thèse

Site

Saclay

Critères candidat

Formation recommandée

Master 2 en astrophysique, en physique des plasmas ou en HPC

Demandeur

Disponibilité du poste

01/10/2026

Personne à contacter par le candidat

BRUN Allan Sacha sacha.brun@cea.fr
CEA
DSM/IRFU/DAp/LDE3
DRF/IRFU/DAp/LDE3
CEA/Saclay
Bat 709
91191 Gif-sur-Yvette, Cedex
+33 1 69 08 76 60

Tuteur / Responsable de thèse

BRUN Allan Sacha sacha.brun@cea.fr
CEA
DSM/IRFU/DAp/LDE3
DRF/IRFU/DAp/LDE3
CEA/Saclay
Bat 709
91191 Gif-sur-Yvette, Cedex
+33 1 69 08 76 60

En savoir plus

https://wholesun.eu
https://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=971