Informations générales
            
            
                
                
                
                    
                        Entité de rattachement
                    
                    Le CEA est un acteur majeur de la recherche, au service des citoyens, de l'économie et de l'Etat.
Il apporte des solutions concrètes à leurs besoins dans quatre domaines principaux : transition énergétique, transition numérique, technologies pour la médecine du futur, défense et sécurité sur un socle de recherche fondamentale. Le CEA s'engage depuis plus de 75 ans au service de la souveraineté scientifique, technologique et industrielle de la France et de l'Europe pour un présent et un avenir mieux maîtrisés et plus sûrs.
Implanté au cœur des territoires équipés de très grandes infrastructures de recherche, le CEA dispose d'un large éventail de partenaires académiques et industriels en France, en Europe et à l'international. 
Les 20 000 collaboratrices et collaborateurs du CEA partagent trois valeurs fondamentales : 
• La conscience des responsabilités
• La coopération
• La curiosité
  
                
                
                    
                        Référence
                    
                    SL-DRF-26-0210  
                
        
                
                
                
                
             
	Direction
DRF
Description du sujet de thèse
	Domaine
Physique de l'état condensé, chimie et nanosciences
	Sujets de thèse
Alliage digital (GaN)n/(AlN)m pour la réalisation de LED capable d'émettre dans l'UV profond 
	Contrat
Thèse
	Description de l'offre
	Contexte :
Les semiconducteurs nitrures du groupe III (GaN, AlN, InN) sont réputés pour leurs excellentes propriétés d’émission lumineuse. Depuis plus de deux décennies, ils sont à la base des LED bleues et blanches utilisées dans le monde entier, grâce à des puits quantiques InGaN très efficaces (rendement quantique externe > 80 %). En revanche, les LED UV basées sur des puits quantiques AlGaN restent très peu efficaces (< 10 %) et ne sont devenues commercialement disponibles que récemment. Surmonter cette limitation constitue un défi majeur en optoélectronique : obtenir une émission UV profonde efficace (220–280 nm) permettrait de développer des applications bactéricides performantes, telles que la purification de l’eau, la stérilisation de surfaces ou l'élimination de virus.
Récemment, deux concepts innovants se sont révélés particulièrement prometteurs pour les LED UV :
1. Émission UV profonde à partir de monocouches de GaN dans l’AlN : il s’agit de faire croître quelques monocouches atomiques (ML) de GaN insérées dans une matrice d’AlN. Ce confinement quantique extrême conduit à une émission dans l’UV profond, jusqu’à 220 nm. Une forte efficacité d’émission est attendue grâce à une liaison excitonique intense, stable même à température ambiante.
2. Amélioration du dopage à l’aide d’alliages numériques gradués GaN/AlN : cette approche consiste à utiliser un alliage digital (GaN)?/(AlN)?, où n et m représentent le nombre de couches atomiques. Cette architecture permet un dopage efficace de type n et surtout p, ce qui constitue un verrou technologique majeur dans les matériaux AlGaN. Le GaN étant beaucoup plus facile à doper que l’AlN, cette méthode s’avère très prometteuse pour la fabrication de dispositifs.
Objectifs scientifiques :
L’objectif est de maîtriser la croissance de monocouches par MOVPE (épitaxie en phase vapeur métal-organique), la technique la plus pertinente sur le plan industriel :
- Projet de M2 : développer la croissance de monocouches de GaN sur substrats d’AlN, étudier leurs propriétés d’émission dans l’UV profond et optimiser les conditions de croissance pour obtenir un dépôt auto-limitant d’une seule couche.
- Poursuite en thèse : concevoir et fabriquer des alliages digitaux dopés GaN/AlN afin de réaliser les premières LED UV profondes efficaces basées sur cette architecture.
Contexte du laboratoire et collaborations :
Le groupe dispose d’une longue expérience dans l’étude de l’émission lumineuse visible et UV à partir de nanofils de nitrures. Nous avons déjà démontré une émission à 280 nm à partir un alliage digital (GaN)?/(AlGaN)?, confirmant la faisabilité de cette approche. Le projet sera fortement expérimental (croissance épitaxiale, caractérisations structurales et optiques avancées) et mené en étroite collaboration avec l’Institut Néel pour l’analyse en cathodoluminescence et la fabrication de dispositifs.
Pourquoi rejoindre ce projet ?
Acquérez une expertise en épitaxie, en physique des semiconducteurs et en optoélectronique. Travaillez dans un environnement dynamique et collaboratif, en lien étroit avec le monde industriel. Contribuez au développement de la prochaine génération de LED émettant dans l’UV profond.
 
	Université / école doctorale
Ecole Doctorale de Physique de Grenoble (EdPHYS)
Université Grenoble Alpes
Localisation du sujet de thèse
	Site
Grenoble
Critères candidat
	Formation recommandée
M2 ou école d'ingénieur en matériaux, nanosciences, semiconducteurs
Demandeur
	Disponibilité du poste
01/10/2026
	Personne à contacter par le candidat
DURAND Christophe 
 christophe.durand@cea.fr
Grenoble-INP
DRF/IRIG/PHELIQS/NPSC
CEA-CNRS group 'Nanophysique et Semiconducteurs', PHELIQS, IRIG 
CEA-Grenoble, 
17 Avenue des Martyrs, 
38000 Grenoble, France
 04 38 78 19 77
	Tuteur / Responsable de thèse
DURAND Christophe 
 christophe.durand@cea.fr
Grenoble-INP
DRF/IRIG/PHELIQS/NPSC
CEA-CNRS group 'Nanophysique et Semiconducteurs', PHELIQS, IRIG 
CEA-Grenoble, 
17 Avenue des Martyrs, 
38000 Grenoble, France
 04 38 78 19 77
	En savoir plus